<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>Introducing PTA</td>
<td>4</td>
</tr>
<tr>
<td>How does PTA relate to security standards?</td>
<td>5</td>
</tr>
<tr>
<td>Terminology</td>
<td>6</td>
</tr>
<tr>
<td>System</td>
<td>6</td>
</tr>
<tr>
<td>Vulnerability</td>
<td>6</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>6</td>
</tr>
<tr>
<td>Asset</td>
<td>7</td>
</tr>
<tr>
<td>Threat</td>
<td>7</td>
</tr>
<tr>
<td>The Threat Model</td>
<td>9</td>
</tr>
<tr>
<td>Attacker Type</td>
<td>9</td>
</tr>
<tr>
<td>Entry Point</td>
<td>9</td>
</tr>
<tr>
<td>Tag</td>
<td>10</td>
</tr>
<tr>
<td>Attached Document</td>
<td>10</td>
</tr>
<tr>
<td>Threat Analysis Steps</td>
<td>11</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>11</td>
</tr>
<tr>
<td>Preparing a List of Tags</td>
<td>11</td>
</tr>
<tr>
<td>Identifying System Assets</td>
<td>11</td>
</tr>
<tr>
<td>Identifying System Vulnerabilities – the real ones</td>
<td>12</td>
</tr>
<tr>
<td>Classifying Potential Attacker Types</td>
<td>13</td>
</tr>
<tr>
<td>Identifying Potential Entry Points</td>
<td>13</td>
</tr>
<tr>
<td>Building Threat Scenarios and Mitigation Plans</td>
<td>13</td>
</tr>
<tr>
<td>Studying the results</td>
<td>14</td>
</tr>
</tbody>
</table>
The Dark Tower had been rebuilt, it was said. From there the power was spreading far and wide, and away far east and south there were wars and growing fear. Orcs were multiplying again in the mountains. Trolls were abroad, no longer dull-witted, but cunning and armed with dreadful weapons. And there were murmured hints of creatures more terrible than all these, but they had no name.

J.R.R. Tolkien. The Lord of the Rings

Preface

This paper describes Practical Threat Analysis (PTA); a well-structured risk assessment methodology implemented in software tool that assists analysts and developers in assessing system risks and building the most effective risk reduction policy for their systems.

What is threat analysis?

Threat analysis identifies threats and defines the most cost-effective risk mitigation policy for a specific architecture, functionality and configuration. It involves mapping assets, modeling threats and building a risk mitigation plan that lowers system risk to a minimal, acceptable level. The mitigation plan is composed of countermeasures that are considered to be the most effective against the identified threats.

When should threat analysis be applied?

Threat analysis is required for:

- Complex software systems that integrate multiple infrastructures and technologies.
- Customized application solutions built on standard products.
- All other cases where implementing pre-compiled “to-do” lists, provided by a software vendor or standards committee, are insufficient.

Threat analysis should be performed as an ongoing process throughout the system's lifecycle of development, integration, change requests and problem management.

The problem

Systems development is always constrained by some combination of budget, time and resources and threat analysis usually ends up as a task to be done “later”. Threat analysis is a skill most developers and managers lack which results in the task being done “never”.

The solution

By using PTA, risk management models and policies can be built quickly and without endangering the project schedule. Knowledge is retained, shared and maintained within the group and program management has total transparency to system risk without the need for additional resources.

What are the existing tools?

Word-Processor + Spreadsheet Documents – The analyst has the freedom to describe threats and vulnerabilities and express her analytical qualification in a free format with no restrictions dictated by the tool. However, the overhead of the data management and the calculation tasks is very high because of the lack of a built-in ability to represent the interrelations between entities and to dynamically alter the threat model. In reality the data model required for threat modeling is far beyond the capabilities of spreadsheet programs. In addition, most of these solutions also lack the necessary reporting functionality.
Checklist-Based Tools – These are tools that provide pre-defined sets of security recommendations that are used as checklists. This approach may work for standard applications where all possible security issues are known in advance. Most of these tools have reporting capabilities and usually come in two flavors:

- Questionnaire-based in which the user is asked to answer a series of questions that reflect the embedded checklist.
- Template-based in which the user is asked to distinguish the specifics of her application from the standard checklist.

Since this type of tool is based on lists of general purpose standard countermeasures, they are not flexible in supporting and encouraging the analyst to create new threat scenarios that are specific to her application.

Threat Modeling Tools – Microsoft’s\(^1\) tool combines Schneier’s Attack-Trees methodology\(^2\) with standard Microsoft Threat Classification\(^3\) and has four important limitations:

- Does not relate threats to financial losses caused by the attacks and does not rank countermeasures by their effectiveness and priority in reducing risk.
- Uses “pre-defined” cases and does not easily fit application-specific threat scenarios
- Does not provide a complete system view for threat analysis risk management.
- Limited reporting and collaborative capabilities

1. Microsoft Threat Modeling Tool
2. Attack Trees by Bruce Schneier
3. STRIDE and DREAD
Introducing PTA

The PTA calculative methodology and software tool enable effective management of operational and security risks in systems. It provides an easy way to maintain dynamic threat models that are capable of reacting to changes in the system’s assets and vulnerabilities. With PTA an analyst can maintain a growing database of threats, create documentation for security reviews and produce reports showing the importance of various threats and the priorities of the corresponding countermeasures.

PTA automatically recalculates threats and countermeasures priorities and provides decision makers with updated risk mitigation plans that reflect the changes in threat realities. Countermeasure priorities are expressed as a function of the system’s assets values, degrees of damage, threat probabilities and level of threat mitigation.

PTA can be used from day one of design and throughout the system’s lifecycle. PTA provides intuitive and easy ways for iterative interaction between threat analysts and developers. It supports a collaborative process of evaluating threats risks and ranking the cost-effectiveness of proposed countermeasures. Productive work with PTA can begin within hours.
How does PTA relate to security standards?

How does PTA relate to security standards and initiatives, such as ISO17799, BS 7799–2002, SSE-CMM, PCI DSS, Octave, FIPS 199, GAISP, COBIT and others?

PTA complements existing standards and appraisal procedures by supplying means for defining the actual threats, vulnerabilities and proposed countermeasures. It manages a well-designed database of all relevant security entities produces documentation for the evaluation procedures, as required by the standards.

Standards recommend procedures that ensure information systems security. These recommendations include mapping of assets, vulnerabilities, threats and countermeasures, assessment of risks and implementation of risk mitigation plans. PTA provides the means for performing these tasks in a highly effective way.

Some standards provide lists of numerous recommended countermeasures. These lists may serve the analyst as a baseline for defining common vulnerabilities and countermeasures and can help him grasp the terminology. PTA enables the integration of these entities in its database. However, it should be noted here, that standard lists cannot cover all the particular aspects of customized solutions and the specifics of complex systems that integrate several technologies. At best, compliance with standards provides only the baseline security and therefore additional analysis of application-specific risks is required.

PTA can serve as the foundation of Information Security Management System - a concept that is promoted by modern standards. Its growing database and statistics serve as evidence of the organization’s efforts for constantly improving threat and vulnerability analysis process.
Terminology

System

System is a cluster of software modules and/or hardware components together with sets of operational and business procedures. Systems are the target of the threat analysis process. Each system is characterized by its specific goals, functionality, architecture, configuration and users.

System’s Maximal Risk is a calculated value that expresses the maximal financial damage that may be caused to the system’s assets due to the identified threats. It reflects the potential risks of all threats to the system’s assets and is displayed in $ value as well as in percentage of the total system assets.

System’s Minimal Risk is a calculated value that expresses the financial damage that may be caused to the system’s assets and the remaining risks of all threats after full implementation of all mitigation plans. It is displayed in $ value as well as in percentage of the total system assets.

System’s Current Risk is a calculated value that expresses the financial damage that may be caused to the system’s assets according to current implementation level of mitigation plans. It is displayed in $ value as well as in percentage of the total system assets.

System’s Total Value of Assets is the calculated total value of all the system assets.

System’s Countermeasures Implementation Cost is the calculated cost of implementing all countermeasures in all mitigation plans.

System’s Current Investment in Implementation is the cost of countermeasures already applied to the system.

Vulnerability

Vulnerability is a weakness, limitation or a defect in one or more of the system’s elements that can be exploited to disrupt the normal function of the system. Vulnerabilities may be in specific modules of the system, its layout, its users and operators, and/or in its associated regulations, operational and business procedures.

Countermeasure

Countermeasure is a procedure, action or mean of mitigating a specific vulnerability. One countermeasure may mitigate several different vulnerabilities. In some standards documentation countermeasures are termed “controls” or “safeguards”.

Countermeasure’s Fixed Cost is the estimated one-time expense (in $) for implementing a countermeasure. For example purchase of equipment, enhancing the software, etc.

Countermeasure’s Fixed Cost Period is the number of years over which the fixed expense lasts (for economical and accounting considerations).

Countermeasure’s Recurring Cost is the estimated recurring cost (in $) of implementing a countermeasure. For example: administrator’s salary, insurance payments etc.

Countermeasure’s Weighted Cost is the calculated weighted average of the countermeasure’s fixed and recurring implementation costs, displayed in ‘annual $’ units.
Countermeasure’s Overall Mitigation is the calculated degree of mitigation provided by a specific countermeasure to the overall system risk, displayed as percentage of the overall risk.

Countermeasure’s Cost-Effectiveness is the degree of mitigation provided by a specific countermeasure to the overall system risk relative to the countermeasure’s implementation cost. The value is displayed in “percents of overall mitigation per 1,000 $” units.

Asset

Asset is information, capability, an advantage, a feature, a financial or a technical resource that may be damaged, lost or disrupted. Assets may be digital (software sources), physical (a server machine) or commercial (the corporate brand). Damage to an asset may affect the normal function of the system as well as that of individuals and/or organizations involved with the system.

Asset’s Fixed Value is the estimated one-time expense (in $) associated with the loss of the asset. For example: financial losses caused by blocking the company’s e-commerce operation for 7 days etc.

Asset’s Fixed Value Period is the number of years over which the asset’s fixed value lasts (for economical and accounting considerations).

Asset’s Recurring Value is the estimated recurring value (in $) of losses that may be caused when the asset is damaged. For example: recurring expense due to the non-availability of a software service.

Asset’s Weighted Value is the calculated financial value of the loss when asset is totally damaged, destroyed or stolen. The value is displayed in ‘annual $’ and expresses the weighted average of the asset’s fixed and recurring values.

Asset’s Relative Value is the calculated percentage of the specific asset's value from the total value of all system assets.

Asset’s Maximal Risk is the calculated maximal risk (in percentage of the asset's value) that threatens the asset. The calculation is based on the parameters of all threats that might damage the asset.

Asset’s Minimal Risk is the calculated risk that threatens the asset after all mitigation plans are implemented. It reflects the actual lowest value of risk that can be achieved after the full implementation of all mitigation plans of the threats that threaten the asset.

Asset’s Current Risk is the calculated risk that threatens the asset according to current implementation level of mitigation plans.

Threat

Threat is a specific scenario or a sequence of actions that exploits a set of vulnerabilities and may cause damage to one or more of the system's assets.

Threat’s Probability is the likelihood that the threat scenario will materialize. In some documentation the threat’s probability is termed “Annual Rate of Occurrence” (ARO) which is the number of times a specific threat incident may occur per year.

Threat’s Damage Level to Asset is the financial value of damage caused by one incident of a specific threat to a specific asset, expressed in percentage of the total asset's value - if level is 100% the damage to the asset is maximal.
Threat’s Damage is the total damage (in percentage of the total value of all assets) that the specific threat may cause to the system. The calculation is based on the damage caused to each of the threatened assets.

Threat’s Maximal Risk is a calculated value that expresses the maximal potential financial damage to system assets due to the specific threat. It is displayed in $ value as well as in percentage of the total system assets. In some documentation the threat’s risk is termed “Annual Loss Expectancy” (ALE).

Threat’s Minimal Risk is a calculated value that expresses the potential financial damage to system assets after all countermeasures relevant to the specific threat are implemented. It is displayed in $ value as well as in percentage of the total system’s assets.

Threat’s Current Risk is a calculated value that expresses the potential financial damage to system assets according to current implementation level of the threat’s mitigation plan. It is displayed in $ value as well as in percentage of the total system’s assets.

Threat’s Recommended Countermeasures is a set of all possible countermeasures that mitigate the threat’s vulnerabilities and reduce the threat’s risk.

Threat’s Mitigation Plan is a subset of recommended countermeasures that is assumed to be the most effective for mitigating a specific threat. The analyst uses his/her expertise to decide which of the recommended countermeasures are most effective when applied together and will be included in the Threat’s Mitigation Plan. A threat mitigation plan is said to be implemented only if all of its countermeasures are implemented.

Threat’s Maximal Mitigation is the maximal mitigation level (in percentage of the specific threat’s risk) that may be achieved by applying all countermeasures in the threat’s mitigation plan.

Threat’s Current Mitigation is the portion of mitigation (in percentage of the specific threat’s risk) that is provided by the countermeasures that are currently implemented.
The Threat Model

The following scheme describes the interrelations between a threat and the assets, vulnerabilities and countermeasures entities.

The threat described in Figure 1, causes damage to Asset-1 and Asset-2 and exploits two vulnerabilities: Vulnerability-1 and Vulnerability-2. Vulnerability-1 is mitigated by Countermeasure-1 and Vulnerability-2 is mitigated by Countermeasure-2 and Countermeasure-3 as noted by the blue arrows.

Since a threat may exploit several vulnerabilities, the set of possible countermeasures that might mitigate a threat is completely defined by the set of vulnerabilities used in a threat scenario and is noted by the green arrows in the scheme.

In a nutshell:
- Threats exploit Vulnerabilities and damage Assets.
- Countermeasures mitigate Vulnerabilities and therefore mitigate Threats.

Attacker Type

Attacker is a person (or group of people) that may perform the steps of a specific threat scenario and attack the system’s assets.

Attacker Types are the various classes of attackers differentiated by their motivation, qualification, available tools and accessibility to the attacked system’s resources. For example: hackers, insiders, users etc.

Entry Point

Entry Point is a “door”, (either in the system itself or in the human operation associated with it) through which an attacker may penetrate the system. Such points are the Web site, IVR service, SMS server, CRM representatives called by customers over the phone etc. Several entry points may be used for materializing a specific threat.
Tag

Tag is a free-text descriptive attribute associated with the threat model entities (assets, threats, vulnerabilities and countermeasures). Tags help the analyst classify the various model entities and improve their comprehensibility.

Attached Document

Attached Document contains additional unstructured information relevant to the threat analysis entities and process. For example: security notes, standards specifications, development ideas, design schemes etc. Documents can be associated with specific model entities at any step of the threat analysis process.
Threat Analysis Steps

Prerequisites

The threat analyst identifies system vulnerabilities, predicts even the most hypothetical threat scenarios and evaluates threat probability and risk to be able to prioritize the corresponding countermeasures.

Before starting out, the analyst should learn the system’s terminology, functionality and architecture. The in-depth understanding of the system is of crucial importance for the correct identification of system vulnerabilities and the building of threat scenarios.

The following documentation is needed:

- Terminology dictionary that explains the terms and acronyms relevant to the system being analyzed
- Functional description of the system including all typical use cases
- Architectural diagram of the system and documentation for various system modules

These documents must be detailed enough to be used as reference for deciding on the applicability of various threat scenarios to the analyzed system.

Preparing a List of Tags

It is a good idea to prepare a list of relevant tags that will help the analyst classify the various threat model entities according to their specific properties. For example: define tags for each of the system’s components or various areas in the system architecture.

Tags can later be associated with the model entities and improve the readability of the threat model.

Identifying System Assets

The correct mapping of assets, their financial value and the evaluation of financial loss to the system’s owner when these assets are damaged or stolen, is one of the most critical tasks in the threat analysis process. The assets value is used as the basis for calculating threat risks and countermeasures priorities.

An analyst may at times hear claims like “everything we have is important”. While this could be true for some systems, we believe it is not the typical case. It is more likely that assets need to be clearly prioritized. Consider, for example the following partial list of the assets of a financial institution:

- Office equipment such as printers
- Confidential client information
- Clients’ money
- Private keys used for authentication of transactions
- Master key used for generating private keys

The accurate assessment of the potential financial damage of losing each of the above assets will enable their correct prioritizing and help avoid a situation where the institution invests resources in protecting printers while leaving the master key unprotected.

In some cases the value of assets is less intuitive especially when they are intangible. For example, the confidence of the public in an electronic trading system may be damaged by the appearance of non-relevant text on the system’s Web site. No money is lost, no information is disclosed, all technical resources are still functioning but the site reputation and the shopper’s trust are shaken. An indirect financial loss should be set for this type of damage.
Due to the importance of asset mapping, we recommend that the asset list and corresponding values be regularly checked by non IT personnel, such as the company’s CFO, marketing officers and legal consultants. Analysts can quickly perform a “what-if” analysis by modifying asset values and obtaining insights on the model's accuracy and completeness.

In practice, it is often easier for the analyst to identify system assets through analyzing specific threats (as described in the following). A fact of human nature is that we don’t realize how valuable things are until we lose them. This implies an iterative approach of mapping assets and threats.

Identifying System Vulnerabilities – the real ones

Identifying vulnerabilities requires that the analyst be intimate with the system’s functionality, architecture, implementation and deployment details. The analyst should also be familiar with business and operational procedures and the types of users and other parties involved in system operation.

An analyst can use the Web to find generally known vulnerabilities as published by software vendors and security consultants. Most of the items in these check lists are, in many cases, irrelevant to the specific system or may be easily solved by a simple comprehensive routine such as “always install most updated vendor’s security patches”. The thing that should concern us here is that such a list will draw the attention of the analyst away from the real vulnerabilities that are specific to the analyzed system.

Therefore we highly recommend that the analyst should investigate the system’s architecture and implementation details and collaborate with architects, developers, installers and support engineers as well as with the system business managers to discover the real vulnerabilities that are unique to the system and may not be identified without this intimate knowledge. From experience – the most severe vulnerabilities reside in the interfaces, junctures and stitches between the various elements in complex systems and rarely appear in the standard lists.

As mentioned before, the identification of relevant vulnerabilities is a continuous iterative task bundled with the step of identifying threats (described below) – the real sophisticated vulnerabilities are identified when building threat scenarios.

Identifying Countermeasures

Identifying countermeasures produces two outputs:

- A list of countermeasures that protect vulnerabilities. The list includes the implementation cost of each countermeasure and their relevant tags. If the countermeasure is already applied it should be marked as ('already implemented') to enable producing updated statistics of the current system risk level.

- A map of the relationships between countermeasures and vulnerabilities. This map shows which vulnerability may be mitigated by a specific countermeasure. Sometimes a countermeasure is introduced as a solution to a specific vulnerability, but after additional consideration it turns out that it may help in mitigating other vulnerabilities too.

The accurate identification of countermeasures and their relations with vulnerabilities is the basis for building risk mitigation plans as described in the next steps.
Classifying Potential Attacker Types

Classifying relevant attacker types focuses the analysis on practical realities. The classification of attackers is useful when we can clearly relate each of the threats with one or more of the attacker types.

Attacker types data include the understanding of his/her motivation as well as his qualification, available tools and accessibility to the system. Special care should be given to the classification of ‘insiders’ attacker type since their activity may be especially dangerous.

A good starting point can be defining an attacker type for each of the user roles which appear in the system’s use cases and reserve few more attacker types to hackers and other types of offenders.

Identifying Potential Entry Points

The best tactic for this step is to review the list of attacker types and document every possible way the potential attackers could access the system. The list of entry points may be revisited and clarified during the analysis process.

Building Threat Scenarios and Mitigation Plans

This is the most important step of the threat analysis process. Its outcomes are:

- A list of the system's threats
- A map of the relationships between threats and associated tags, assets, attacker types, entry points and vulnerabilities
- An evaluation of the total damage and risk parameters for each of the threats
- Mitigation plans and the evaluation of the remaining system's risk data

Since threats are the most complex entities in the model, the process of identifying and constructing the threat's elements and parameters has a 'decomposition' nature. During this process the analyst will have to return to previous analysis steps in order to create missing entities, such as assets and vulnerabilities referred by the constructed threat. The following describes the sub-steps of building a threat scenario and a mitigation plan for a single threat.

Initializing threat - start from name and description

Always start by giving the threat a name and a short textual description (a few sentences) that includes the attacker’s actions and the threat's impact on the system. The description will be used as reference for the following steps and will be refined during the process.

Identifying damaged assets and damage levels

Compose a list of assets that may be damaged by the threat and the maximal damage level that one incident of a specific threat may cause to each asset. That will enable the automatic calculation of the total damage (financial losses) to the system if the threat materializes.

Setting the threat's probability

Threat's probability is set by estimating the number of times the threat will materialize per year. Its value is in the range of 0 – N, where 0 means that threat will never materialize and N means that the threat will materialize N times in a year. The threat's risk value is automatically calculated based on the threat's total damage and the threat's probability.
Identifying the exploited vulnerabilities

The correct identification of the vulnerabilities exploited by the threat scenario is important for choosing the most suitable countermeasures and building the threat's mitigation plan. Once the vulnerabilities are identified, the list of proposed countermeasures is populated automatically.

Building a mitigation plan for the threat

Building a mitigation plan is done by selecting the most effective combination of countermeasures from the list of all the proposed countermeasures for the specific threat. The decision, which of proposed countermeasures would be included in the actual mitigation plan, is done by the analyst according to his/her expertise and experience. She will decide upon the most effective group of countermeasures for mitigating the threat - the threat's mitigation plan.

Constructing a mitigation plan is a matter for experts and no simple rule for finding the correct combination of countermeasures can be given. A mitigation plan of a specific threat contains a subset of countermeasures associated with that threat which, in order to be efficient, has to be implemented as a whole. A threat mitigation plan is said to be implemented only if all of its countermeasures are implemented, otherwise it is considered as not implemented.

In order to assist with the computation of countermeasures' contribution to mitigating the system risk, the analyst is asked to estimate the level of mitigation provided to the threat's risk if all countermeasures in the mitigation plan are implemented.

Identifying relevant attacker types

Associating threats with their relevant attacker types may be helpful in re-assessing the threat's scenario and probability, the exploited vulnerabilities and the potentially damaged assets. All the threat's elements should fit with the attackers' profiles - their qualifications, motivations and accessibility to resources.

Specifying tags

Associating threats with their relevant system tags helps validating the threat scenario mapping on top of the design documents used by the analyst. The tags properties may be used later for viewing risk and mitigation statistics grouped by specific tags e.g. system areas.

Identifying relevant entry points

Associating threats with their relevant entry points may be done in correlation with the identification of exploited vulnerabilities, attacker types and tags associated with the threat. Each of the three last steps should be used by the analyst to validate the threat scenario and help evaluate the threat's risk and the effectiveness of the proposed countermeasures.

Studying the results

The following are the outcomes of the threat analysis process:

- List of the system's threats sorted by risk level
- List of the system's threats sorted by the financial damage they cause
- List of individual countermeasures sorted by their overall risk mitigation effect
- List of countermeasures sorted by their cost effectiveness
- Maximal financial risk caused to each asset by existing threats
- Maximal financial risk caused to each asset by existing threats after all mitigation plans are implemented
- Maximal financial risk caused to each asset by existing threats after partial implementation of mitigation plans (use the 'already implemented' flag in countermeasures)
- Total financial risk including all assets
- Total financial risk after all mitigation plans are implemented
- Total financial risk after partial implementation of mitigation plans

Reviewing these results can help the analyst improve the threat model and refine the model entities parameters. It is most productive to check how the model behaves in response to changes in the input data and run various "what if" scenarios since this provides additional insight of the systems' realities.

Note:
For latest version of this document please visit: http://www.ptatechnologies.com/pta.htm